The use of this site and the content contained therein is governed by the Terms of Use. When you use this site you acknowledge that you have read the Terms of Use and that you accept and will be bound by the terms hereof and such terms as may be modified from time to time.
All text, graphics, audio, design and other works on the site are the copyrighted works of nasscom unless otherwise indicated. All rights reserved.
Content on the site is for personal use only and may be downloaded provided the material is kept intact and there is no violation of the copyrights, trademarks, and other proprietary rights. Any alteration of the material or use of the material contained in the site for any other purpose is a violation of the copyright of nasscom and / or its affiliates or associates or of its third-party information providers. This material cannot be copied, reproduced, republished, uploaded, posted, transmitted or distributed in any way for non-personal use without obtaining the prior permission from nasscom.
The nasscom Members login is for the reference of only registered nasscom Member Companies.
nasscom reserves the right to modify the terms of use of any service without any liability. nasscom reserves the right to take all measures necessary to prevent access to any service or termination of service if the terms of use are not complied with or are contravened or there is any violation of copyright, trademark or other proprietary right.
From time to time nasscom may supplement these terms of use with additional terms pertaining to specific content (additional terms). Such additional terms are hereby incorporated by reference into these Terms of Use.
Disclaimer
The Company information provided on the nasscom web site is as per data collected by companies. nasscom is not liable on the authenticity of such data.
nasscom has exercised due diligence in checking the correctness and authenticity of the information contained in the site, but nasscom or any of its affiliates or associates or employees shall not be in any way responsible for any loss or damage that may arise to any person from any inadvertent error in the information contained in this site. The information from or through this site is provided "as is" and all warranties express or implied of any kind, regarding any matter pertaining to any service or channel, including without limitation the implied warranties of merchantability, fitness for a particular purpose, and non-infringement are disclaimed. nasscom and its affiliates and associates shall not be liable, at any time, for any failure of performance, error, omission, interruption, deletion, defect, delay in operation or transmission, computer virus, communications line failure, theft or destruction or unauthorised access to, alteration of, or use of information contained on the site. No representations, warranties or guarantees whatsoever are made as to the accuracy, adequacy, reliability, completeness, suitability or applicability of the information to a particular situation.
nasscom or its affiliates or associates or its employees do not provide any judgments or warranty in respect of the authenticity or correctness of the content of other services or sites to which links are provided. A link to another service or site is not an endorsement of any products or services on such site or the site.
The content provided is for information purposes alone and does not substitute for specific advice whether investment, legal, taxation or otherwise. nasscom disclaims all liability for damages caused by use of content on the site.
All responsibility and liability for any damages caused by downloading of any data is disclaimed.
nasscom reserves the right to modify, suspend / cancel, or discontinue any or all sections, or service at any time without notice.
For any grievances under the Information Technology Act 2000, please get in touch with Grievance Officer, Mr. Anirban Mandal at data-query@nasscom.in.
Blockchain technology has gained a lot of interest as a result of its use in public blockchain networks like Bitcoin and Ethereum. Businesses who wish to benefit from blockchain technology while maintaining control over the network’s users and operations are increasingly turning to private blockchain networks, also known as permissioned blockchains.
Any blockchain protocol must provide consensus techniques to support the decentralized and trustless nature of the technology. Compared to public blockchain networks, private blockchain protocols have different requirements and necessitate alternative consensus mechanisms. In private blockchain systems, consensus methods are even more important for guaranteeing the network’s dependability and security. These networks are designed to be used in environments where security, privacy, and control are essential, like in financial or medical applications.
The range of access and control distinguishes private from public blockchain protocols. A private blockchain only allows a select few users to access it, in contrast to a public blockchain where anybody can join the network and confirm transactions. This is accomplished by establishing various access restrictions and permission requirements.
Why Is Consensus Vital for Private Blockchains?
Even when a private blockchain is controlled by a certain group of individuals, the integrity of the data must still be ensured. In this, consensus algorithms are utilized. This validation process protects the network’s security and legitimacy in private blockchain networks by restricting who can approve transactions and add them to the blockchain. This ensures network security, which is essential in industries handling sensitive data and exposed to malicious individuals or unauthorized access.
Consensus protocols enable the network to operate independently of any individual participant. This is crucial in industries like finance and healthcare where protecting the privacy of sensitive data is of utmost importance.
Even if a single company or group owns the majority of the nodes on a private blockchain, these strategies are crucial for maintaining the network’s reliability and confidence among the participating parties. It ensures that everyone accepts the ledger and that the network operates effectively and securely.
Since it ensures the network’s security, integrity, and anonymity, this validation mechanism is generally regarded as a crucial part of private blockchain protocols since it makes them suitable for use in sectors requiring a high level of trust and control.
Permissioned Protocols: How Do They Achieve Consensus?
In permissioned protocols, consensus is reached through a planned process involving a pre-selected set of validators. Transactions are first broadcast to the network by users, who then have the pre-selected validators verify them. These transactions are compiled into blocks, and a group of validators agree by a supermajority on the order of transactions to reach a consensus regarding the state of the blockchain.
After a block has been verified and uploaded to the blockchain, a permanent and unchangeable record of all transactions is kept there. Through this continual process, a secure, decentralized ledger of all transactions is produced.
As opposed to permissionless protocols like Bitcoin and Ethereum, permissioned protocols have a pre-approved group of validators. These validators, who are responsible for protecting the network’s integrity, are often chosen by the organization that established the protocol. As a result, they are in charge of confirming transactions, gathering them into blocks, and reaching an agreement on the state of the blockchain at the moment.
Using pre-approved validators in permissioned protocols increases network security since they are well-known organizations and are held accountable for their conduct. In contrast, permissionless protocols allow anyone to participate as a validator and make it more challenging to identify and hold malicious actors accountable.
The steps are repeated to build a secure and decentralized log of all transactions: choosing validators, broadcasting transactions, arranging them into blocks, validating them, and adding them to the blockchain.
Protocols of Consensus for Allowed System
The current permissioned blockchain systems offer a wide range of consensus processes. These consist of:
Proof of Authority (PoA)
Identity serves as the sole source of authority verification in the Proof of Authority (PoA) consensus method, which uses it to verify transactions. When the identities of the validators are known and have already been confirmed by the network’s governing body, it is widely employed in private and consortium blockchain networks.
In a PoA network, validators are typically people or organizations who have been granted the go-ahead to validate network transactions after undergoing due diligence. These validators are in charge of maintaining network security by making sure that only legitimate transactions are uploaded to the blockchain.
The two most well-known PoA-based permissioned blockchains are Quorum and Hyperledger Besu.
Evidence of Time Spent
Also known as The Proof of Elapsed Time (PoET) consensus technique validates transactions using a random waiting time algorithm. It is also used in private blockchain networks where the member nodes are reliable and whose existence is known.
Every node in the PoET network must hold idle for a certain period of time that is randomly selected. The right to begin work on the following block is given to the first node to successfully complete the waiting period. This waiting time can be determined similarly to a lottery, where the node with the lowest number wins, by using a trusted execution environment (TEE), which generates a random number and ensures that each node waits the same amount of time.
The Hyperledger Sawtooth Proof of Elapsed Time (PoET) consensus method solely provides economic analysis for resource-efficient mining (REM).
Practice of Byzantine Fault Tolerance (pBFT)
The main node, also known as the leader, in pBFT is in charge of gathering and allocating trades. The transactions that the leader has proposed are examined by validators, also referred to as backup nodes. A transaction is confirmed, verified, and added to the blockchain after being confirmed by a supermajority of validators.
The key advantage of pBFT is that it can quickly reach an agreement even while some nodes are behaving strangely. Before a transaction is confirmed, nodes must communicate with one another over at least three rounds of communication called “pre-prepare,” “prepare,” and “commit.” Polygon Edge makes use of a unique consensus mechanism – IBFT, which supports two forms: PoA (Proof-of-authority) and PoS (Proof-of-Stake). The solution enables the transfer of tokens such as ERC-20 and ERC-721 via a centralized bridging solution. It also supports communication across a myriad of varied blockchain networks.
However, once a block has been confirmed, it is said to be irreversible, which implies that any transaction included in it cannot be changed or undone. Even in the presence of malfunctioning nodes, the system will concur on a single block because of the safety feature of PBFT.
It is still plagued with issues. It takes more resources than other consensus algorithms and necessitates extensive communication between nodes. Furthermore, if a sizable number of the nodes are hacked, pBFT-based networks are more likely to fracture and become more vulnerable to assaults.
Hyperledger Fabric and Corda are the two most well-known blockchains that use PBFT.
Federal Byzantine Convention (FBA)
A distributed network can figure out its state by using the Federated Byzantine Agreement (FBA) approach to come to consensus among its nodes. As the network’s backbone, its Byzantine fault tolerance (BFT) algorithm enables the network to function even when some nodes are corrupted or malfunction.
Each node in FBA selects a group of reliable nodes known as its “quorum slice,” which may link to create a bigger “quorum” if necessary. The system’s state is then decided by the quorum. FBA is regarded as a decentralized consensus technique because quorums are established based on the preferences of individual nodes.
Well-known permissioned blockchain R3 Corda makes use of the Federated Byzantine Agreement (FBA).
Istanbul BFT
A consensus algorithm for private blockchain networks is called Istanbul BFT (IBFT). Because it is built on the Byzantine Fault Tolerance (BFT) algorithm, the network can continue to function normally even if some nodes are compromised or malfunction.
IBFT has two different categories of entities: validators and proposers. To create a block that is broadcast to the validators, the proposer must gather transactions from the transaction pool. There are two methods for choosing the proposer: round-robin scheduling or a sticky proposer, in which the same proposer is chosen for a predetermined number of rounds.
The block is then assessed by validators, who confirm that it complies with the network’s established policies and standards. A block is uploaded to the blockchain once it has been approved by more than two thirds of validators.
In a network of N validator nodes where N = 3F + 1, the system can accept nodes with up to F defects. This is due to the fact that a block cannot be regarded as legitimate unless it receives 2F + 1 validation messages from other validators. This makes it so the network can still agree on the system’s condition even if some nodes fail.
State-machine replication is carried out by Istanbul BFT on the Quorum blockchain and Hyperledger Besu.
About The Author
Dr. Ravi Chamria is co-founder CEO of Zeeve Inc, an Enterprise Blockchain company. He has an experience of 18+ years in IT consulting spanning across Fintech, InsureTech, Supply Chain and eCommerce. He is an executive MBA from IIM, Lucknow and a prolific speaker on emerging technologies like Blockchain, IoT and AI/ML.
Passionate About: Blockchain, Supply Chain Management, Digital Lending, Digital Payments, AI/ML, IoT
That the contents of third-party articles/blogs published here on the website, and the interpretation of all information in the article/blogs such as data, maps, numbers, opinions etc. displayed in the article/blogs and views or the opinions expressed within the content are solely of the author's; and do not reflect the opinions and beliefs of NASSCOM or its affiliates in any manner. NASSCOM does not take any liability w.r.t. content in any manner and will not be liable in any manner whatsoever for any kind of liability arising out of any act, error or omission. The contents of third-party article/blogs published, are provided solely as convenience; and the presence of these articles/blogs should not, under any circumstances, be considered as an endorsement of the contents by NASSCOM in any manner; and if you chose to access these articles/blogs , you do so at your own risk.
Zeeve is an enterprise-grade Blockchain Infrastructure Automation Platform. Join the growing list of clients that trust us with their Blockchain initiatives
The cryptocurrency market has rapidly evolved, bringing new opportunities and technologies that shape how users trade digital assets. One of the most innovative developments is hybrid crypto exchanges—platforms that blend the features of…
In today’s rapidly evolving crypto landscape, building a secure, functional, and user-friendly exchange is a top priority for businesses eager to enter the cryptocurrency market. While developing a crypto exchange from scratch can be costly and…
The cryptocurrency landscape has seen unprecedented growth over the past few years, making crypto exchanges a central pillar in the digital economy. For businesses looking to launch a crypto exchange, understanding the development process is…
In the ever-evolving landscape of cryptocurrency, the demand for secure and user-friendly wallets is on the rise. For businesses aiming to capitalize on this trend, the Exodus Wallet Clone Script emerges as a viable option. But how can you…
The rapid growth of cryptocurrency has opened new opportunities for entrepreneurs, and launching a crypto exchange platform is one of the most promising ventures in the digital finance space. A successful crypto exchange requires careful planning…
With cryptocurrency exchanges popping up everywhere, building a standout platform in 2024 takes more than just offering basic trading options. Here are some core features to focus on that not only attract users but keep them coming back—ideal for…