Topics In Demand
Notification
New

No notification found.

Blog
Edge Computing in Industrial Environments

October 23, 2018

684

0

Edge computing in industrial environments offers the promise of getting the right device data in near real-time to drive better decisions and maybe even control industrial processes.  For this to work, it means that the edge device, its embedded software, edge servers, the gateways, and cloud infrastructure must all be up and running correctly all the time.

edge

The Industrial Network Edge

The industrial network “edge” (where computing occurs) can extend to industrial devices, machines, controllers, and sensors. Edge computing and analytics are increasingly being located close to the machines and data sources. As the digitization of industrial systems proceeds, analysis, decision-making, and control are increasingly being physically distributed among edge devices, edge servers, the network, the cloud, and connected systems, as appropriate. These functions will end up where it makes most sense, making it essential for today’s automation assets to be designed to leverage the edge.

Edge computing supports IT/OT convergence by bridging these two areas of the architecture. This is particularly obvious as edge devices evolve beyond their traditional role of serving field data to upper level networks and emerge as an integral part of the industrial internet architecture. Today, the IT organization owns more and more of the architecture and standards associated with the industrial internet, including both clouds and networks.

With edge computing and analytics, data is processed near the source, in sensors, controllers, machines, gateways, etc. These systems may not send all data back to the cloud, but the data can be used to inform local machine behaviors as it is filtered and integrated. The edge systems may decide what gets sent, where it gets sent and when it gets sent. Placing intelligence at the edge helps address problems often encountered in industrial settings, such as oil rigs, mines, chemical plants, and factories. These problems include low bandwidth, low latency, and the perception that mission-critical data must be kept on site to protect IP. 

As manufacturers implement solutions that connect their machines, equipment, and production systems to the digital enterprise, end users in both process and discrete manufacturing plants would like to see real-time intelligence at the edge. In today’s connected factories and plants, edge computing will provide the foundation for the next generation of smart connected devices and the digital enterprise. These intelligent edge devices can aggregate and analyze sensor and other data and stream information to support predictive analytics platforms.

Hybrid Approaches to Edge Computing

Hybrid approaches utilizing edge computing and the cloud will provide end users in process and discrete plants with actionable information to support real-time business decisions, asset monitoring, data analytics, process alarming, and process control, as well as machine learning. Increasingly, the computational capabilities from both edge and cloud computing are migrating into the gateways and edge devices for IIoT networks.

Not surprisingly, many end users expect to perform data analytics at the edge. If industry is to move to ecosystems of smart connected machines and production systems, the first step is to create a digital environment that securely connects factories and plants using intelligent devices that can access, capture, aggregate, and analyze data at the production process and provide actionable information to enable operations, maintenance, and plant and product engineering and support groups to optimize how products are designed, manufactured, and supported.

Factors Driving Connectivity at the Edge

Operational, asset management, and reliability issues will drive end users to deploy edge computing.   However, for edge computing and devices for machines, equipment, and production systems to continue to proliferate, cybersecurity concerns must first be addressed. While edge devices can connect factory ecosystems, products and equipment in the field, and even the manufacturing supply chains; these devices and connections must first be made secure and reliable.

Smart manufacturing and edge computing with information-enabled operations offers virtually infinite potential to improve business performance. Companies will be able to use data that has long been stranded inside machines and processes to quickly identify production inefficiencies; compare product quality against manufacturing conditions; and pinpoint potential safety, production, or environmental issues. Remote management of this edge infrastructure will immediately connect operators with off-site experts to be able to avoid or quickly trouble-shoot and resolve downtime events.

Finally, edge and cloud computing architectures will accelerate IT and OT convergence. As a result, IT and OT professionals who previously only oversaw their own individual systems are learning about the counterpart technologies. IT professionals need the skills to transfer their experience of enterprise network convergence and ubiquitous use of Internet Protocol into manufacturing applications. OT professionals need the skills to migrate from yesterday’s islands of automation to today’s plant-wide, information-centric edge and cloud architectures. 

Reprinted with permission, original blog was posted here”. You may also visit here for more such insights on the digital transformation of industries.

 About ARC Advisory Group (www.arcweb.com): Founded in 1986, ARC Advisory Group is a Boston based leading technology research and advisory firm for industry and infrastructure.

 For further information or to provide feedback on this article, please contact akanagali@arcweb.com

 

About the Author:

Craig Resnick

Vice President, Consulting

Craig is the primary analyst for many of ARC’s automation supplier and financial services clients. Craig’s focus areas include production management, OEE, HMI software, automation platforms, and embedded systems.


That the contents of third-party articles/blogs published here on the website, and the interpretation of all information in the article/blogs such as data, maps, numbers, opinions etc. displayed in the article/blogs and views or the opinions expressed within the content are solely of the author's; and do not reflect the opinions and beliefs of NASSCOM or its affiliates in any manner. NASSCOM does not take any liability w.r.t. content in any manner and will not be liable in any manner whatsoever for any kind of liability arising out of any act, error or omission. The contents of third-party article/blogs published, are provided solely as convenience; and the presence of these articles/blogs should not, under any circumstances, be considered as an endorsement of the contents by NASSCOM in any manner; and if you chose to access these articles/blogs , you do so at your own risk.


© Copyright nasscom. All Rights Reserved.