Topics In Demand
Notification
New

No notification found.

How Data Annotation is Beneficial for Artificial Intelligence and Machine Learning
How Data Annotation is Beneficial for Artificial Intelligence and Machine Learning

July 13, 2023

145

0

The modern world is ruled by smart gadgets and equipment that are powered by Artificial Intelligence (AI) and Machine Learning (ML). Information is fed into AI machines so that they perform human-like actions. These machines work in accordance with the parameters that you establish for your data set. Data annotation is the solution that helps bridge the gap between sample data and AI/ML.

Data annotation guarantees that AI or ML projects become scalable. It is a process where a human data annotator adds labels, categories, and other contextual elements to the raw data set so machines are able to understand the information and can act upon it. Without data labeling, ML algorithms won’t be able to compute important attributes with ease.

Different Types of Data Annotation

The types of annotations to be used vary depending on what you want to accomplish from your AI and the data sources it will require. Here are the common types of data annotation services:

annotation in machine learning

Image annotation labels images with keywords, metadata, and other descriptors that help comprehend the image with regard to other image descriptors. This annotation makes images accessible to users using screen readers and also websites like stock photo aggregators in recognizing and delivering photos for user queries.

Text annotation concentrates on adding instructions and labels to raw text. This helps AI to identify and understand how general human sentences and other textual data get structured to form meaning. The three main categories of text annotation that explain the different meanings with data sets are:

Sentiment: In this annotation, a human annotator gathers data for AI while ensuring they consider the emotional tone and subjective implication behind phrases and keywords. Sentiment annotation assists AI in understanding the meaning of texts beyond the dictionary meanings. This kind of annotation is beneficial for AI-powered moderation on social media platforms.

Intent: In intent annotation, the annotator concentrates on labeling the end goal of the user behind distinct statements. Intent annotation offers insight into the domain of customer service where AI-powered chatbots are needed to comprehend specific information or results that are needed to be delivered to a human user.

Semantic: Semantic annotation is driven by buyer-seller relationships and it works to offer clear labels on product listings so that AI is able to suggest in search results what customers are seeking.

Multiple IoT (Internet of Things) and mobile devices are dependent on speech recognition and other features of comprehension. However, these devices only learn audial meanings via audio annotation. Audio annotators deal with data in the form of speech and other sound effects and the audio clips are labeled and categorized depending on factors like dialect, intonation, volume, pronunciation, and more. IoT devices rely on audio and speech recognition that comes from audio annotation.

Video annotation blends multiple features of audio and image annotation that help AI understand the meaning of visual and sound elements in a video clip. This type of annotation has become especially useful in the development of technologies like in-home IoT devices and self-driving cars.

  • Image Annotation
  • Text Annotation
  • Audio Annotation
  • Video Annotation

Features of Data Annotation

There are certain tools that make an annotation in all types of data annotation:

Data annotation can’t be practiced without the right set of data. As raw data comes in innumerable forms, it is important that data relevant to the training of your AI tools are chosen. The data is generally gathered from historic human interaction data that is present on the company’s file. However, open-source data can also at times meet the requirements of the data annotation project.

Ontologies are blueprints that provide helpful and accurate frameworks for annotation. They include information like labeling guidelines, annotation types, and attribute and class standards.

A huge amount of raw data is needed for data annotation of AI and ML projects. To organize both annotated and raw data and make it easily accessible, you have to store it in a software or file system that can handle the bandwidth.

  • Sample Sets of Smart Data
  • Ontologies
  • Dataset Management and Storage Tools

How Does Your Business Benefit From Annotation Services?

Data annotation services improve the accuracy and quality of your data by offering you the expertise to annotate it. This makes your data more usable, shareable, and accessible. The services also help in improving your skills in data analysis. By annotating your data, you get to discover hidden insights and patterns that you might not have been able to discover before. Your business also gets access to recommendations on how it can improve its data.

Finally, data annotation services help you in improving the quality of your data analytics and warehouse tools. When you annotate data, you can guarantee that the information is easy to discover and consistent. This allows you to make informed decisions and improve the overall performance of your business.

Benefits of Using Data Annotation for AI and ML Models

Data annotation services make way for a better understanding of the meaning of the objects and help algorithms perform better. Here are some important advantages of data annotation for AI/ML models:

Annotated data provides users of AI systems with a seamless experience. An intelligent product is adept at addressing the doubts and problems of users by offering relevant help. Annotation offers the ability to act with relevance.

A computer vision model operates with multiple accuracy levels over an image in which distinct objects are labeled accurately as compared to an image with poorly labeled objects. Thus, better annotation leads to a higher precision of the model.

Data annotation helps streamline preprocessing which is a vital step in the ML dataset building process. Labeled datasets are important for ML models as they need to understand the input patterns to process them better and produce accurate results. Data annotation services result in the creation of huge labeled datasets over which AI/ML models can operate effectively. Clean labeled data is the key to foolproof AI & ML implementations.

Data annotation accommodates intents, actions, and sentiments from distinct requests. With the help of annotated data, accurate training datasets are created. These datasets impart data scientists and AI engineers with the capability to scale the different mathematical models for different datasets of any volume.

  • Smooth End-User Experience
  • Better Precision of AI/ML Models
  • Easy creation of labeled datasets
  • Ability to scale implementation

Summing up

For the right application of data annotation, you need to leverage the mix of smart tools and human intelligence. This will help you create quality training data sets for machine learning. It is vital that enterprises devise strong data annotation capabilities for supporting AI & ML model building and ensuring it doesn’t fail.

Data that is accurately annotated lets you know when you have created a high-performing AI & ML model as a solution to a complex business problem. You’ll also get to know if you have wasted your resources and time on a failed experiment. Getting in touch with data annotation experts is the best move for your organization when you don’t have the required expertise and time to build a quality AI/ML model. The experts will help you rapidly scale your AI capabilities and conceptualize solutions of machine learning to meet customer expectations and market demands.

Read here the original blog: https://www.damcogroup.com/blogs/how-data-annotation-is-beneficial-for-artificial-intelligence-and-machine learning#:~:text=Data%20annotation%20guarantees%20that%20AI,and%20can%20act%20upon%20it.

 


That the contents of third-party articles/blogs published here on the website, and the interpretation of all information in the article/blogs such as data, maps, numbers, opinions etc. displayed in the article/blogs and views or the opinions expressed within the content are solely of the author's; and do not reflect the opinions and beliefs of NASSCOM or its affiliates in any manner. NASSCOM does not take any liability w.r.t. content in any manner and will not be liable in any manner whatsoever for any kind of liability arising out of any act, error or omission. The contents of third-party article/blogs published, are provided solely as convenience; and the presence of these articles/blogs should not, under any circumstances, be considered as an endorsement of the contents by NASSCOM in any manner; and if you chose to access these articles/blogs , you do so at your own risk.


Gurpreet heads the ITeS business unit in Damco. He is an experienced professional with a demonstrated history of excelling in ITeS, managing Profit Center Operations with a strong focus on implementing industry best practices, driving operational excellence initiatives and enhancing the customer experience.

© Copyright nasscom. All Rights Reserved.