Topics In Demand
Notification
New

No notification found.

Diamond-based quantum technology expected to gain foothold
Diamond-based quantum technology expected to gain foothold

June 13, 2021

3

0

While silicon is traditionally used for computer and mobile phone hardware, diamond has unique properties that make it particularly useful as a base for emerging quantum technologies such as quantum supercomputers, secure communications and sensors.

However there are two key problems; cost, and difficulty in fabricating the single crystal diamond layer, which is smaller than one millionth of a metre.

A research team from the ARC Centre of Excellence for Transformative Meta-Optics at the University of Technology Sydney (UTS), led by Professor Igor Aharonovich, has just published two research papers, in Nanoscale and Advanced Quantum Technologies, that address these challenges.

For diamond to be used in quantum applications, we need to precisely engineer 'optical defects' in the diamond devices -- cavities and waveguides -- to control, manipulate and readout information in the form of qubits -- the quantum version of classical computer bits.

To overcome the "etching" challenge, the researchers developed a new hard masking method, which uses a thin metallic tungsten layer to pattern the diamond nanostructure, enabling the creation of one-dimensional photonic crystal cavities.

The use of tungsten as a hard mask addresses several drawbacks of diamond fabrication. It acts as a uniform restraining conductive layer to improve the viability of electron beam lithography at nanoscale resolution.

"The use of tungsten as a hard mask addresses several drawbacks of diamond fabrication. It acts as a uniform restraining conductive layer to improve the viability of electron beam lithography at nanoscale resolution," said lead author of paper in Nanoscale, UTS PhD candidate Blake Regan.

To the best of our knowledge, we offer the first evidence of the growth of a single crystal diamond structure from a polycrystalline material using a bottom up approach -- like growing flowers from seed.

"It also allows the post-fabrication transfer of diamond devices onto the substrate of choice under ambient conditions. And the process can be further automated, to create modular components for diamond-based quantum photonic circuitry," he said.

The tungsten layer is 30nm wide -- around 10,000 times thinner than a human hair -- however it enabled a diamond etch of over 300nm, a record selectivity for diamond processing.

The tungsten layer is 30nm wide -- around 10,000 times thinner than a human hair -- however it enabled a diamond etch of over 300nm, a record selectivity for diamond processing.

A further advantage is that removal of the tungsten mask does not require the use of hydrofluoric acid -- one of the most dangerous acids currently in use -- so this also significantly improves the safety and accessibility of the diamond nanofabrication process.

To address the issue of cost, and improve scalability, the team further developed an innovative step to grow single crystal diamond photonic structures with embedded quantum defects from a polycrystalline substrate.

Source: Science Daily


That the contents of third-party articles/blogs published here on the website, and the interpretation of all information in the article/blogs such as data, maps, numbers, opinions etc. displayed in the article/blogs and views or the opinions expressed within the content are solely of the author's; and do not reflect the opinions and beliefs of NASSCOM or its affiliates in any manner. NASSCOM does not take any liability w.r.t. content in any manner and will not be liable in any manner whatsoever for any kind of liability arising out of any act, error or omission. The contents of third-party article/blogs published, are provided solely as convenience; and the presence of these articles/blogs should not, under any circumstances, be considered as an endorsement of the contents by NASSCOM in any manner; and if you chose to access these articles/blogs , you do so at your own risk.


NatashaSharma

© Copyright nasscom. All Rights Reserved.