The use of this site and the content contained therein is governed by the Terms of Use. When you use this site you acknowledge that you have read the Terms of Use and that you accept and will be bound by the terms hereof and such terms as may be modified from time to time.
All text, graphics, audio, design and other works on the site are the copyrighted works of nasscom unless otherwise indicated. All rights reserved.
Content on the site is for personal use only and may be downloaded provided the material is kept intact and there is no violation of the copyrights, trademarks, and other proprietary rights. Any alteration of the material or use of the material contained in the site for any other purpose is a violation of the copyright of nasscom and / or its affiliates or associates or of its third-party information providers. This material cannot be copied, reproduced, republished, uploaded, posted, transmitted or distributed in any way for non-personal use without obtaining the prior permission from nasscom.
The nasscom Members login is for the reference of only registered nasscom Member Companies.
nasscom reserves the right to modify the terms of use of any service without any liability. nasscom reserves the right to take all measures necessary to prevent access to any service or termination of service if the terms of use are not complied with or are contravened or there is any violation of copyright, trademark or other proprietary right.
From time to time nasscom may supplement these terms of use with additional terms pertaining to specific content (additional terms). Such additional terms are hereby incorporated by reference into these Terms of Use.
Disclaimer
The Company information provided on the nasscom web site is as per data collected by companies. nasscom is not liable on the authenticity of such data.
nasscom has exercised due diligence in checking the correctness and authenticity of the information contained in the site, but nasscom or any of its affiliates or associates or employees shall not be in any way responsible for any loss or damage that may arise to any person from any inadvertent error in the information contained in this site. The information from or through this site is provided "as is" and all warranties express or implied of any kind, regarding any matter pertaining to any service or channel, including without limitation the implied warranties of merchantability, fitness for a particular purpose, and non-infringement are disclaimed. nasscom and its affiliates and associates shall not be liable, at any time, for any failure of performance, error, omission, interruption, deletion, defect, delay in operation or transmission, computer virus, communications line failure, theft or destruction or unauthorised access to, alteration of, or use of information contained on the site. No representations, warranties or guarantees whatsoever are made as to the accuracy, adequacy, reliability, completeness, suitability or applicability of the information to a particular situation.
nasscom or its affiliates or associates or its employees do not provide any judgments or warranty in respect of the authenticity or correctness of the content of other services or sites to which links are provided. A link to another service or site is not an endorsement of any products or services on such site or the site.
The content provided is for information purposes alone and does not substitute for specific advice whether investment, legal, taxation or otherwise. nasscom disclaims all liability for damages caused by use of content on the site.
All responsibility and liability for any damages caused by downloading of any data is disclaimed.
nasscom reserves the right to modify, suspend / cancel, or discontinue any or all sections, or service at any time without notice.
For any grievances under the Information Technology Act 2000, please get in touch with Grievance Officer, Mr. Anirban Mandal at data-query@nasscom.in.
In the ever-developing arena of public blockchains, consensus mechanisms serve as the linchpin for the authentication and inclusion of transactions into the ledger. To keep pace with the continuously burgeoning demands for expeditious and secure transactions, it is imperative that these mechanisms are engineered with scalability in mind.
From Proof of Work (PoW) and Proof of Stake (PoS), to Delegated Proof of Stake (DPoS) and Practical Byzantine Fault Tolerance (PBFT), the panoply of consensus mechanisms employed in large-scale public blockchains each boast their own idiosyncratic advantages and disadvantages. Ultimately, the choice of mechanism will hinge on the intricacies and specific requirements of the blockchain it is serving.
What constitutes Consensus in Public Blockchains and its Functionality?
Consensus refers to the modus operandi employed by multiple participants to reach a concurrence in a decentralized system, such as a blockchain network. The consensus mechanism is responsible for certifying transactions and generating new blocks in the blockchain. Polygon is a multilevel framework with functionalities for developing interoperable blockchain networks. It was launched to scale the Ethereum blockchain using sidechain solutions. This solution resolved the throughput problems, lack of community governance, and poor user experience. It uses the Plasma technology to process off-chain transactions before recording them on Ethereum.
The consensus procedure in a public blockchain is pivotal for preserving the security, stability, and veracity of the network by necessitating all users to concur on the state of the network without resorting to a central authority. The consensus mechanism ensures the network’s fortification against attacks such as double spending and resolves any possible conflicts.”
Procedures for Attaining Accord in Open-Source Blockchain Networks
Proof-of-Work (PoW)
PoW is a pervasive consensus strategy in public blockchains. It arose as the consensus mechanism for Bitcoin and has since been embraced by numerous other digital currencies. The approach encompasses validators, also referred to as miners, who engage in a competition to decipher a convoluted mathematical conundrum in order to validate transactions and incorporate them into the blockchain. The miner who successfully resolves the puzzle is remunerated with tokens, and the blockchain is augmented with the certified transactions. This sequence is denoted as “mining.”
PoW confers robust security as interfering with the blockchain is computationally challenging, rendering it onerous for malicious actors to launch attacks or exert control over the network.
However, PoW also exhibits some drawbacks, such as exorbitant energy consumption and concentration of mining operations. As the difficulty of mining escalates, more energy is required, and a smaller cohort of powerful mining pools will exert greater influence over the mining process.”
Proof of Stake (PoS)
Proof-of-Stake (PoS) is utilized by multiple cryptocurrencies, including Bitcoin, as a substitute for Proof-of-Work (PoW) as the consensus methodology. Open-source blockchain technologies adopt PoS as a means of resolving some of the problems intrinsic to PoW, such as its lack of efficiency and the concentration of mining capability.
In PoS, validators are selected based on the quantity of tokens they hold and are eager to pledge as collateral for authenticating and incorporating transactions into the blockchain. The probability of being selected to validate transactions increases in proportion to the number of tokens held by the validator, a process referred to as “staking.”
The act of pledging tokens encourages validators to act in a conscientious manner and preserve the security of the network. If a validator engages in malicious behavior, they can be expelled from the network and have their pledged tokens confiscated.
PoS requires fewer energy resources compared to PoW to validate transactions as it does not depend on computational power. This renders PoS a more sustainable and efficient alternative for blockchain protocols that necessitate elevated levels of security and efficiency.
Delegated Proof of Stake (DPoS)
DPoS is a widely adopted consensus mechanism within the domain of open-source blockchain protocols that harmonize Proof-of-Stake (PoS) and democratic governance. With the implementation of DPoS, token holders can bestow their responsibilities of transaction validation and record keeping to delegate entities. This, however, incurs a level of risk to the trustworthiness of both delegates and the network as a whole, thereby requiring delegates to operate with a heightened degree of accountability.
DPoS presents a more efficacious scaling solution in comparison to other consensus mechanisms, such as Proof-of-Work, due to its lower necessity for delegate validators, thereby enhancing transaction processing velocities and augmenting network throughput.
Token holders are empowered to exercise their franchise by voting for delegates they perceive to act in the most beneficial manner for the network, conferring a democratic element to DPoS. This democratic procedure results in a more decentralized and representative decision-making process, in contrast to the concentration of power in a handful of major mining pools that is characteristic of consensus systems like Proof-of-Work.
Practical Byzantine Fault Tolerance (PBFT)
An inconspicuous yet profound transformation is transpiring within the domain of open-source blockchain technology, with the potential to fundamentally alter the landscape of digital transactions. This transformation is epitomized by the advent of Practical Byzantine Fault Tolerance (PBFT), a consensus mechanism that has been instrumental in unlocking the full potential of blockchain systems.
PBFT is a mechanism that grapples with the intricate problem of Byzantine faults, wherein network nodes engage in intentional violations of the protocol or act with malicious intent. This solution has acquired a reputation for providing dependable security in decentralized environments, as evidenced by its widespread utilization among blockchain systems.
The modus operandi of PBFT is founded upon collaboration and consensus among network nodes, each of which retains a replica of the blockchain and works in conjunction with others to verify transactions. When a node is solicited to validate a transaction, it communes with all other nodes in the network to ascertain consensus on the legitimacy of the transaction. If the majority of nodes concur that the transaction is legitimate, it is incorporated into the blockchain, becoming an immutable and permanent component of the digital ledger.
The security offered by PBFT is unparalleled, as it is capable of functioning even if as many as one-third of the network’s nodes are compromised or acting maliciously. As long as a minimum of two-thirds of the nodes are trustworthy, the network is capable of reaching a consensus and maintaining the security of the blockchain.
The advent of PBFT has marked the onset of a new era in the world of open-source blockchain technology, characterized by its reputation for delivering dependable security in decentralized environments and its capability to operate even in the face of malicious actors. This, in combination with its ability to operate even in adverse circumstances, renders it a powerful tool for shaping the future of digital transactions.
Proof of Elapsed Time (PoET)
In the arena of blockchain consensus mechanisms, a novel innovation has emerged to address the shortcomings of traditional approaches. The Proof of Elapsed Time (PoET) consensus mechanism, implemented within open-source blockchain frameworks, endeavors to offer a superior solution that prioritizes energy efficiency, scalability, and security.
Central to PoET’s operation is the selection of a leading node, chosen through a randomized process to validate transactions and incorporate them into the blockchain. This leader is identified through a randomized wait time, generated by a secure hardware timer such as Intel’s Software Guard Extensions (SGX). The node with the shortest wait time assumes the mantle of leadership, executing its responsibilities with efficiency and economy, free from the energy-intensive calculations necessary for Proof-of-Work.
PoET transcends the boundaries of traditional consensus mechanisms, obviating the requirement for substantial token holdings, as is the case with Proof-of-Stake. This expands the pool of potential participants, augmenting the accessibility of the network. The random selection of leaders ensures network decentralization, hindering any single node or group from exerting undue influence over transaction validation.
PoET represents a symbol of progress, synergizing the strengths of Proof-of-Work and Proof-of-Stake while remedying their shortcomings. Its energy efficiency, scalability, and decentralization make it a formidable alternative for open-source blockchain protocols that demand a judicious balance between security and efficiency. PoET transcends mere consensus mechanism status and serves as an emblem of advancement and a portent of a more brilliant future.
Conclusion
The intricately choreographed interplay of consensus algorithms within the domain of open-source blockchain protocols constitutes a symphonic fusion of security, efficiency, and scalability, each element meticulously calibrated to produce a harmonious network.
Ranging from the percussive beats of Proof-of-Work to the elegant melodies of Delegated Proof-of-Stake, each algorithm brings its own distinct strengths and limitations, making it well-suited for specific purposes. Selecting the appropriate algorithm is a delicate task, one that necessitates a comprehensive understanding of the blockchain protocol’s objectives and requirements.
However, it would be a grave oversight to presume that consensus algorithms are the sole determinant of a blockchain protocol’s success. The governing architecture, the network’s pulsating tempo, and the scalability solutions all contribute their own critical role to the grand performance of the blockchain.
As the blockchain technology landscape continues to evolve, new algorithms will emerge from the shadows, each eager to participate. And with each new arrival, the competition will be fueled, driving innovation and elevating the blockchain orchestra to a superior level of security, efficiency, and expandability.
In essence, consensus mechanisms are a cornerstone of open-source blockchain protocols and the mechanism selected will have a significant impact on the network’s security, efficiency, and capacity for growth. As blockchain technology continues to advance, it is imperative to stay informed of the various consensus mechanisms and their advantages and disadvantages, to make well-informed decisions when designing or selecting a blockchain protocol.
About The Author
Dr. Ravi Chamria is co-founder CEO of Zeeve Inc, an Enterprise Blockchain company. He has an experience of 18+ years in IT consulting spanning across Fintech, InsureTech, Supply Chain and eCommerce. He is an executive MBA from IIM, Lucknow and a prolific speaker on emerging technologies like Blockchain, IoT and AI/ML.
Passionate About: Blockchain, Supply Chain Management, Digital Lending, Digital Payments, AI/ML, IoT
That the contents of third-party articles/blogs published here on the website, and the interpretation of all information in the article/blogs such as data, maps, numbers, opinions etc. displayed in the article/blogs and views or the opinions expressed within the content are solely of the author's; and do not reflect the opinions and beliefs of NASSCOM or its affiliates in any manner. NASSCOM does not take any liability w.r.t. content in any manner and will not be liable in any manner whatsoever for any kind of liability arising out of any act, error or omission. The contents of third-party article/blogs published, are provided solely as convenience; and the presence of these articles/blogs should not, under any circumstances, be considered as an endorsement of the contents by NASSCOM in any manner; and if you chose to access these articles/blogs , you do so at your own risk.
Zeeve is an enterprise-grade Blockchain Infrastructure Automation Platform. Join the growing list of clients that trust us with their Blockchain initiatives
Enterprises operating in the Web2 space could benefit at large when they transition from Web 2 to Web 3 but they have their own challenges like inability to interoperate with partner networks, development challenges and accessibility making…
A promising yet underutilized application amongst all soaring blockchain technologies is the supply chain. One can create complete, transparent, tamper-proof records of information flow, inventory flow and financial flows of every single transaction…
Blockchain technology, once associated solely with cryptocurrencies, has evolved into a transformative force that transcends financial markets. As we stand at the crossroads of technological innovation, the future trends in blockchain development…
The World Energy Council defines that the energy sector can remain robust and sustainable in the long run if they solve three key problems: (i) Energy Security, (ii) Energy Equity, and (iii) Environmental Sustainability of Energy Systems.…
The revolution that blockchain has brought across various industries has been encouraging more enterprises to build innovative, future-proof, and highly feasible blockchains. However, building a blockchain from scratch is challenging for many…
In recent years, the growth rate of the blockchain market has been very high due to increased adoption and as more people become aware of blockchain technology and its potential uses. Due to the surge in growth, Scalability, security, and high…