Topics In Demand
Notification
New

No notification found.

Mainframe modernization leveraging the Power of Hadoop framework
Mainframe modernization leveraging the Power of Hadoop framework

220

0

Need to Offload from Mainframe

 

In the digital world, Mainframes continues to drive significant part of world’s business transactions and data. While Mainframes provides advantages of massive power, reliability, security, performance and scalability, organizations are already exploring possibilities of Mainframe Modernization. Major drivers that make mainframe customers consider migration are huge application and infrastructure Platform Costs, storage cost, maintenance, limited flexibility and lack of integration and web capabilities and last but not the least shrinking skill pool.

The data stored and processed in mainframes is vital, but the resources required to manage data on mainframe systems are highly expensive. Businesses today, spend approximately $100,000 per TB, every year, to lock their data and back it up to tape. But, to process the same amount of data on Hadoop it costs only $1000. To manage this massive cost, organizations are increasingly offloading data to the Hadoop components by shifting to clusters of commodity servers. Offloading data to Hadoop has potential benefits to the business, as the data is available to the analysts to explore and discern business opportunities. Organizations run mission critical applications on mainframe, which generate huge volumes of data but lack the capability to support business requirements for processing unstructured data.

 

Mainframe batch processes can efficiently run on Hadoop and scaled up at a fraction of the cost and time. Migrating mainframe applications to Hadoop is a viable proposition because of its flexibility in upgrading the applications, improved return on investment (ROI), cost effective data archival and the availability of historical data for analytics.

 

Offloading from Mainframe to Hadoop

 

The scalable, resilient and cost-effective technology like Hadoop have given organizations an opportunity to reduce processing and maintenance expenses with mainframe systems by off-loading the batch processing from Mainframes to Hadoop components. Companies can address big data analytic requirements using Hadoop and distributed analytical model while leveraging the stored legacy data for valuable business insights. Organizations like Twitter and Yahoo are already reaping the benefits of Hadoop technology for Mainframe workloads.

Hadoop is well among COBOL and other legacy technologies, so, by migrating from mainframe to Hadoop, batch processing can be done at a lower cost, and in a fast and efficient way. Moving from mainframe to Hadoop is a good move now, because of the reduced batch processing and infrastructure costs. Also, Hadoop code is extensible and easily maintainable, which helps in rapid development of new functionalities.

 

Components in the Hadoop Ecosystem:

There are several Hadoop components that one can take direct advantage of, when offloading from Mainframes to Hadoop:

 

  • HDFS, Hive and MapReduce of Hadoop framework help process huge legacy data, batch workloads and storage of the intermediate results of processing. Batch jobs can be taken off from mainframe systems, processed using Pig, Hive or MapReduce which helps reduce MIPS (million instructions per second) cost.
  • Sqoop and Flume components of the Hadoop framework helps move data between Hadoop and RDBMS.
  • Oozie, component of the Hadoop framework, helps schedule batch jobs just like the job scheduler in mainframes.
  • Low value, poorly performing jobs are best suited for Hadoop platform
  • Periodic, mission critical jobs are ideal for Spring Batch
  • Batch processes that are typically involved in Extract, Transform and Load are ideal for ETL platform
  • MongoDB suits giant databases

 

Benefits of Migrating to Hadoop

 

Adopting a Hadoop approach allows enterprises to address data mining and analytics needs using Hadoop and the distributed analytical model while leveraging accumulated legacy data for information discovery. Huge volumes of structured and unstructured data and historical data can be leveraged for analytics instead of restricting it to limited volumes of data to contain costs. This helps improve the quality of analytics and offers better insights on a variety of parameters to create business value. Hadoop components are easily maintainable as well as flexible, which aids in building new functionality, and facilitates swift development with the added benefit of faster project delivery times.

 

 

 

 

Typical Mainframe Workloads

  • End of day/month/year processes
  • Periodic batch/transactional processing
  • Report and statement generation
  • Data ingestion and extraction into mainframe database (DB2, IMS, VSAM)
  • Data transformation and transmission
  • Data archival and purge

 


That the contents of third-party articles/blogs published here on the website, and the interpretation of all information in the article/blogs such as data, maps, numbers, opinions etc. displayed in the article/blogs and views or the opinions expressed within the content are solely of the author's; and do not reflect the opinions and beliefs of NASSCOM or its affiliates in any manner. NASSCOM does not take any liability w.r.t. content in any manner and will not be liable in any manner whatsoever for any kind of liability arising out of any act, error or omission. The contents of third-party article/blogs published, are provided solely as convenience; and the presence of these articles/blogs should not, under any circumstances, be considered as an endorsement of the contents by NASSCOM in any manner; and if you chose to access these articles/blogs , you do so at your own risk.


images
Sameer Paradkar
Enterprise Architect - Modernization Domain

Software Architect, Author & Speaker

© Copyright nasscom. All Rights Reserved.